
Fast And Lightweight Spring
Boot Applications With GraalVM

Alina Yurenko
Microsoft JDConf 2024

2

GraalVM and Native Image 🚀

An advanced JDK with ahead-of-time
Native Image compilation

3

 native-image MyMainClass
./mymainclass

JIT AOT
java MyMainClass

2017 Year2018 2019 2020 2021 2022 20232005 2011... ...

Sun Labs’
Maxine Java
JVM initial
release

December
Native Image
open sourced

April
Twitter uses
Graal JIT for
core
microservices

October
Micronaut
1.0 with
Native
Image
support

April
GraalVM 1.0
released

April

Thomas
Wuerthinger
joins Oracle and
starts Graal
compiler project

March
Spring Native
goes beta

November
Quarkus
1.0 with
Native
Image
support

May
GraalVM
goes GA
(19.0
release)

September
MicroDoc
announces
GraalVM for
embedded

July
Alibaba
deploys
Native
Image in
production

July
Facebook
deploys
GraalVM in
production

May
AWS SDK
support for
Native
Image

November
Spring Boot 3
with Native
Image support

December
OpenJDK
Galahad
project
proposed

July
Google Cloud
Platform SDK
support for
Native Image

June
GraalVM Free
Terms and
Conditions
license

September
GraalOS &
Layered
Native
Image
announced

March
Azure SDK
support for
Native
Image

September
Oracle Cloud
runs services
on GraalVM

Graal History

 🚀🎉

Copyright © 2024, Oracle and/or its affiliates

GraalVM Native Image AOT Compilation

6

Ahead-of-Time
Compilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable

7

GraalVM meets Spring Boot! 🎉

Spring Boot and GraalVM

8
spring.io/blog/2022/11/24/spring-boot-3-0-goes-ga

Spring Boot and GraalVM

9

start.spring.io

Spring AOT Engine

10

spring.io/blog/2021/12/09/new-aot-engine-brings-spring-native-to-the-next-level

11

Ready for GraalVM Native Image

graalvm.org/native-image/libraries-and-frameworks

GraalVM Native Image & Unit

12

@EnabledInNativeImage
• used to signal that the annotated test class or test method is

only enabled when executing within GraalVM native images

• when applied at the class level, all test methods within that class will be
enabled within a native image

@DisabledInNativeImage
• used to signal that the annotated test class or test method is

only disabled when executing within a GraalVM native image.

13

Demo 🚀

Spring PetClinic on Oracle GraalVM - Peak Throughput

14

Spring PetClinic on Oracle GraalVM - Memory Efficiency

15

Spring PetClinic Performance on Oracle GraalVM

16

GraalVM CE with C2 JIT Oracle GraalVM Native Image

Memory Usage (max RSS) 1,029 MB 641 MB

Peak throughput 11,066 req/s 11,902 req/s

Throughput per memory 12,488 req/(GB*s) 18,569 req/(GB*s)

Tail latency (P99) 7.2ms 5.15ms

Startup 7,090ms 210ms

-38% lower
+8% higher
+49% better
-28% lower
34x faster

Compact
Packaging

17

GraalVM Native Image—Ideal for Cloud Native Applications

Improved
Security

Fast Start
& Scale

Lower Resource
Usage

Predictable
Performance

Supported

 Azure
 AWS
 GCP
 OCI

Copyright © 2024, Oracle and/or its affiliates

Container Size (MB)

0

125

250

375

500

Debian 12-slim
+ JDK 21

Distroless Java 21 Distroless Java Base
+ jlink

Distroless Java Base
+ Native Image

Distroless Base
+ Native Image

Distroless Static
+ Native Image

18.1
36.3

48.9

127

199

405

95.5% container image size reduction
JDK’s Simple Web Server

18

GraalVM Native Image

JVM

Compact
Packaging

Cross-Platform Builds on GitHub Actions

19

Windows
Executable

macOS
Executable

Linux
Executable

.class

.jar

.class

.jar

GraalVM GitHub
Action 🏗

20

• Reduced attack surface area
due to dead code removal—
unused classes, methods, and
fields not included in
executable

Improved
Security • Not vulnerable to JIT

compiler attacks
 all code is AOT compiled

• SBOM supporting industry
standards

 Embedded in executables
 CycloneDX format

• Not vulnerable to
deserialization attacks via
class loading—executable
includes only required and
specified classes

Reduced Attack Surface 🛡

21

What’s next for GraalVM

• Java 22 features

• The fastest GraalVM yet :)

• Developer experience improvements

Learn more: medium.com/graalvm

GraalVM for JDK 22 🚀

22

http://medium.com/graalvm

Layered Native Images

23

Micronaut base

Micronaut extensions
(Web, Data, Test)

Spring base

App 1

App 2 App 3

 Deployment: resources sharing ☁

JDK base

Application code

Development: fast recompilation 🚀

JDK base + Micronaut base+ all extensions

App 4

GraalOS—Advanced cloud native application deployment platform

24

Fast Start
GraalOS applications
start fast with
virtually no cold start
cost

Low Latency
Excellent 99th
percentile latency
makes GraalOS
applications highly
responsive

Run On Demand
GraalOS applications
are automatically
suspended and
resumed on demand
—with no idle cost

Applications, not
Containers
GraalOS uses the latest
advances in x86 and
AArch64 processor
architectures for hardware
enforced application
isolation without containers

Reduced Memory
GraalOS applications
require significantly
less memory
resulting in reduced
operating costs

Cloud Native
With support for
stateful and stateless
services and
functions, GraalOS is
ideal for cloud native
applications

Runs applications as small, fast GraalVM Native Image compiled machine executables

• Migrate 🚀

• Move to Spring Boot 3.X

• If not possible, start with adding Native Build Tools

• Build and deploy 👷

• Build and test on GraalVM as the JVM, build with Native Image closer to the deployment

• Quick build mode with `-Ob`

• Use CI/CD systems for deployment and cross-platform builds

• Run faster 🚀

• PGO

• Machine Learning PGO

• G1 GC

• `-march=native`

Recommendations

https://github.com/graalvm/native-build-tools

graalvm.org

sdk install java
22-graal

Get started with GraalVM 🚀

github.com/graalvm/
graalvm-demos

docker pull container-
registry.oracle.com/
graalvm/jdk:22

Thank you!

@alina_yurenko

27

